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Abstract. These are the notes for an introductory talk on topological modu-

lar forms given at Dan Berwick-Evans’s learning seminar in Fall 2023 at UIUC.
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1. Background and Motivation

Physicists care about elliptic genera: ring maps ΩSO
• → C which are multiplica-

tive with respect to bundles of spin manifolds having compact connected structure
group.

Theorem 1.1 (Ochanine [8]). There is a “universal elliptic genus” Φuniv : ΩSO
• →

MF0(2)⊗ C. That is, for any point p ∈ H/Γ0(2), evp ◦ Φuniv is an elliptic genus,
and this gives a bijective correspondence between elliptic genera and complex elliptic
curves with Γ0(2)-structure. Moreover, if M is spin, Φ(M) ∈ Z[[q]], i.e. it has
integral Fourier coefficients.

Witten generalized this ([10]). The generalized Witten genus of a superstring is
the large-volume limit of its partition function. For the type II superstring, this
gives Φuniv. For the heterotic superstring, this gives the “ordinary” Witten genus
Φ : ΩSO

• → MF , which is valued in Z[[q]] on string manifolds. (If one writes out
the formula for these two genera, the only difference is that Ochanine’s genus has
level 2 Eisenstein series where Witten’s has ordinary ones.)

This is all well and good, but why stop here? The genus of a spinning particle lifts
to a map of E∞-ringsMSpin → KO ([2],[4]) which has great geometric significance,
replacing a difference of dimensions of spaces with the formal difference of the spaces
themselves. Maybe something similar is true here.

Conjecture 1.2 (Witten). There is an E∞-ring of “topological modular forms”,
tmf , and an orientation MString → tmf lifting Φ.

Theorem 1.3 (Ando-Hopkins-Rezk [1]). Yep.
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In between this conjecture and its resolution, a lot of people worked very hard
to construct tmf. To understand how, let’s review the chromatic perspective on
K-theory.

2. K-Theory, the Chromatic Way

Definition 2.1. The multiplicative formal group law over a ring R is given by

Fmult(x, y) = x+ y + xy. The associated formal group is called Ĝm, since it is the
completion of Gm = SpecR[t±].

This is, famously, the formal group of K-theory. But how do we go the other
way? Well, the most classical way of constructing a cohomology theory from a
formal group law is the Landweber Exact Functor Theorem.

Theorem 2.2 (LEFT). Suppose a formal group over a stack S is classified by
φ : S → Mfg, and denote by Q : Spaces → qCoh(Mfg) the sheaf-valued homology
theory sending X to the sheaf associated to MU∗(X) over MU∗//MU∗MU ∼= Mfg.
If φ is flat, then φ∗(Q) is a sheaf of homology theories on S, so the presheaf of ring
spectra on Mfg pulls back to a presheaf of ring spectra on S.

Proof. Clearly φ∗(Q)(X) is a quasicoherent sheaf, so we just need to show that this
functor is a homology theory. Additivity is clear. Since φ is flat, φ∗ preserves exact
sequences, and thus the LES axiom holds and this is a homology theory. The last
statement now follows from Brown representability. □

Using the explicit version of Landweber’s criterion, one can easily check that

Ĝm is Landweber-exact. Applying this to the completion map Spec(Z)//C2
∼=

BGm → Mfg, we get a presheaf of ring spectra on BGm with Γ(BGm) ≃ KO and
Γ(Spec(Z)) ≃ KU .

We have just constructed the homotopy-commutative C2-ring spectrumKR from
just the multiplicative formal group. If we had instead used the additive formal
group, we would have gotten ordinary homology. What other formal groups are

there? At height ∞, we just have Ĝa. At height 1, though, in addition to Ĝm, we
have the completions of ordinary elliptic curves, and at height 2 we have the comple-
tions of supersingular elliptic curves. So we’d probably do well to see what happens
in the elliptic case. Indeed, there are some elliptic curves whose completions are
Landweber-exact, and the associated ring spectra are called elliptic spectra, with
the represented cohomology theories called elliptic cohomology. This isn’t enough,
though. We want to understand the universal elliptic cohomology theory; and we
want E∞-rings.

3. A Bit of Spectral Algebraic Geometry

An introduction to the material of this section can be found in [9], and the
original source for most of it is [6].

Definition 3.1. A map A → B of E∞-rings is called étale if

i) π0A → π0B is étale in the classical sense, and
ii) A → B is flat, i.e. πnA⊗π0A π0B → πnB is an isomorphism for all n.

An étale cover of A, then, is an étale map A → B such that π0A → π0B is
faithfully flat.
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Definition 3.2. The (small) étale site of an E∞-ring R is the category of étale
maps R → S with Grothendieck topology given by étale covers. The topos of
sheaves on this site is called Spét(A), the étale spectrum of A.

Proposition 3.3. Spét(A) carries a canonical sheaf of E∞-rings in the obvious
way.

Proof. Exercise. □

A spectrally-ringed topos is called a nonconnective spectral Deligne-Mumford
stack if it is locally of the form Spét(A). (The term “spectral Deligne-Mumford
stack” is traditionally reserved for connective objects.) For convenience, I will
abbreviate “nonconnective spectral Deligne-Mumford stack” to “DM-stack” in this
talk.

There is a natural notion of morphism of DM-stacks, analogous to the locality
condition for morphisms of classical schemes, called a strictly Henselian morphism.
This yields an adjunction

Spét : CAlg DM : Γ(−)⊣

as we would expect.
As in the classical case, we have a notion of formal DM-stack, which includes

the étale spectra of adic E∞-rings (E∞-rings with an adic topology on π0). With
this comes a notion of formal group, a group object in “formal hyperplanes” (the
formal DM analogue of affine space). As usual, we take all formal groups to be one-
dimensional and commutative. It will be convenient to represent adic E∞-rings by
their duals, which are E∞-coalgebras; see [5] for more details. Suffice for now to
say that this corresponds to working with homology rather than cohomology, and
involves no loss of information for reasons of dualizability.

4. Oriented Elliptic Curves

Recall that for any complex-oriented ring spectrum E, we get a classical formal
group E∗(CP∞). Here is the E∞ version of that construction.

Definition 4.1. Let R be a complex-periodic1 E∞-ring. The Quillen formal group

of R is the spectral formal group ĜQ
R represented by the smooth E∞-coalgebra

R⊗S Σ
∞
+ CP∞ with group structure coming from the usual operation on CP∞.

Definition 4.2. Let G be a formal group over R. An orientation of G is an

isomorphism ĜQ
R ≃ G.

For example, consider R = KU . Then ĜQ
R ≃ Ĝm, where the right hand side is

the formal multiplicative group of KU . More generally, we can consider the moduli
stack of oriented multiplicative groups, defined by the property DM(SpétR,Mor

Gm
) ≃

Iso(ĜQ
R, Ĝm(R)). This will give us KR as before, but now as a C2-E∞-ring. To

get the height 2 analogue of this construction, we can replace oriented Gms with
oriented elliptic curves.

1Short for “complex-oriented and even-periodic”. While a complex-oriented ring spectrum is

one equipped with a homotopy-commutative ring map from MU , a complex-periodic ring spec-
trum is equivalently one equipped with a homotopy-commutative ring map from periodic complex

cobordism MUP .
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Definition 4.3. A strict abelian variety is a product-preserving functor Latop →
DM, where Lat is the category of finite-rank free abelian groups. (That is, it is a
model for the Lawvere theory of abelian groups.) An oriented elliptic curve is a
one-dimensional strict abelian variety together with an orientation of its completion.

Recall that classically, we can define integral modular forms as the graded ring
of sections of powers of a line bundle ω over the moduli stack of elliptic curves,
MFN = Γ(Mell;ω

⊗N ). (To be precise, ω is the pullback of the invertible sheaf
of fiberwise Kähler differentials of the universal elliptic curve.) We use a similar
method to construct tmf.

Theorem 4.4 (Goerss-Hopkins-Miller-Lurie [5]). Let U be the étale topos of the

classical moduli stack of elliptic curves, and O : Uop → CAlg♡ its structure sheaf
of classical rings. Then O lifts uniquely to a sheaf of E∞-rings Otop on U with
π0(Otop) ∼= O such that for any elliptic curve C with étale classifying map u :
SpétA → Mℓ,

i) Otop(u) is complex-periodic, and

ii) The classical formal group of Otop(u) is naturally ismorphic to Ĉ.

The spectrally-ringed topos Mor
ell := (U ,Otop) is a DM-stack, and it is the moduli

stack of oriented elliptic curves.

This theorem can be proven either by direct application of E∞ obstruction the-
ory (the method of Goerss-Hopkins-Miller) or by working with deformations of
p-divisible groups (the method of Lurie).

Both Mor
Gm

and Mor
ell admit maps to Mor

fg, the moduli stack of oriented formal

groups. (This last stack is probably not Deligne-Mumford, so we probe it using
DM-stacks.)

Definition 4.5. TMF = Γ(Mor
ell,Otop) is called periodic tmf. If we replace this

stack with its Deligne-Mumford compactification M̂or
ell, the resulting E∞-ring is

called Tmf (compactified tmf); and the connective cover of compactified tmf is
called tmf (connective tmf).

Nice Facts:

• TMF is 576-periodic.
• π∗(tmf) is close to MF , but not exactly equal.
• There is an E∞ orientation MString → tmf lifting the Witten genus.
• πét

1 (Mor
ell)

∼= 1. However, Mor
ell[N

−1] has étale covers whose global sections
are things like TMF (N), TMF0(N), and TMF1(N). “Tmf with level
structure” is interesting and complicated, and can be used to understand
genuine Cn-equivariant tmf ([7]). If we go all the way and look at Mor

ell⊗C,
we get an étale cover for every congruence subgroup Γ ⊂ GL2(Z). Describ-
ing modular-equivariant tmf is an ongoing project; the state of the art is
[3], which generalizes this to Tmf (and tmf) by looking at log-étale covers
of the compactified moduli stack.
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